前回,粒子の位置$x$と運動量$p$の期待値を求めた((4.4)式と(4.5)式).
今回は,位置$x$と運動量$p$の揺らぎ$\delta x$,$\delta p$を考え,Robertsonの不等式からHeisenbergの不確定性原理の式を導出してみたいと思う.
◎交換関係の定義(とおまけ)2つの演算子$A, B$に対し,
$$[A, B] :=AB-BA \tag{5.1}$$を交換関係と言う.また,
$$\{ A, B \} :=AB+BA \tag{5.2}$$を反交換関係と言う.
今回は,$A=\hat{x}, B=\hat{p}$として考える.すると,任意の関数$f$に対し,
$$\begin{eqnarray}
(\hat{x}\hat{p}-\hat{p}\hat{x})f &=& -i\hbar \left( x \frac{\partial f}{\partial x}-\frac{\partial}{\partial x}(xf) \right) \\
&=& -i\hbar \left[ x\frac{\partial f}{\partial x}- \left( f+ x\frac{\partial f}{\partial x}\right) \right] \\
&=& -i\hbar (-f) \\
&=& i\hbar f \tag{5.3}
\end{eqnarray}$$が成り立つ.よって,(5.1)と(5.3)をまとめると,
$$[\hat{x}, \hat{p}]=i\hbar \tag{5.4}$$であることがわかる.
◎内積の定義と諸性質関数$\phi, \psi$に対して,内積$\langle \phi | \psi \rangle$を
$$\langle \phi | \psi \rangle := \int \phi^*(q_1, \cdots,q_f) \psi (q_1, \cdots, q_f) d \tau \tag{5.5} $$で定義する.ここで,$\tau=(q_1, \cdots, q_f)$である.
この内積は,以下の5つの性質を満たす.
$$\begin{eqnarray}
&1.& \ \langle \phi | \psi \rangle = \langle \psi | \phi \rangle ^* \tag{5.6} \\
&2.& \ \langle \phi | \lambda_1 \psi_1+\lambda_2\psi_2\rangle =\lambda_1 \langle \phi | \psi_1 \rangle +\lambda_2\langle \phi | \psi_2\rangle \ {\rm for} \ \lambda_1, \lambda_2 \in \mathbb{C} \tag{5.7} \\
&3.& \ \langle \lambda_1\phi_1+\lambda_2\phi_2 |\psi \rangle = \lambda_1 ^* \langle \phi_1 | \psi \rangle +\lambda_2^* \langle \phi_2 |\psi \rangle \ {\rm for} \ \lambda_1, \lambda_2 \in \mathbb{C} \tag{5.8} \\
&4.& \ \langle \psi | \psi \rangle \geq 0 \tag{5.9} \\
&5.& \ |\langle\phi|\psi\rangle| \leq \sqrt{\langle\phi|\phi\rangle \langle\psi|\psi\rangle} \ ({\rm Schwarz \ ineq.}) \tag{5.10}
\end{eqnarray}$$
◎Robertsonの不等式ある演算子$A$に対して,その揺らぎを$\delta A := A- \langle A \rangle$で定義する.
このとき,$\langle (\delta A)^2 \rangle$を$A$の分散と言う.
2つの演算子$A, B$に対して,(5.10)より,
$$\langle (\delta A)^2 \rangle \langle (\delta B)^2 \rangle \geq |\langle \delta A\delta B \rangle |^2 \tag{5.11}$$が成り立つ.ここで,(5.1)と(5.2)より,
$$\begin{eqnarray}
\delta A\delta B &=& \frac{1}{2}(\delta A\delta B -\delta B\delta A)+\frac{1}{2}(\delta A\delta B +\delta B\delta A) \\
&=& \frac{1}{2}\left[ (A-\langle A \rangle)(B-\langle B \rangle)-(B-\langle B \rangle)(A-\langle A \rangle) \right] +\frac{1}{2}\{ \delta A,\delta B \} \\
&=& \frac{1}{2}(AB-BA) +\frac{1}{2}\{ \delta A, \delta B \} \\
&=& \frac{1}{2}[A,B] +\frac{1}{2}\{ \delta A,\delta B \} \tag{5.12}
\end{eqnarray}$$であるから,
$$\begin{eqnarray}
|\langle \delta A\delta B \rangle|^2 &=& \left| \frac{1}{2}\langle[A,B] \rangle +\frac{1}{2}\langle \{ \delta A,\delta B \} \rangle \right| ^2 \\
&=& \left| \frac{1}{2} \langle [A,B] \rangle \right| ^2 +\left| \frac{1}{2} \langle \{ \delta A, \delta B \} \rangle \right| ^2 \\
&\geq& \frac{1}{4} |\langle [A,B] \rangle |^2 \tag{5.13}
\end{eqnarray}$$となる.1行目から2行目へは,$\langle [A,B] \rangle$は純虚数,$\langle \{ \delta A, \delta B \} \rangle$が実数であることを用いた.
よって,(5.11)と(5.13)を合わせると,
$$\langle (\delta A)^2 \rangle \langle (\delta B)^2 \rangle \geq \frac{1}{4} |\langle [A,B] \rangle |^2 \tag{5.14}$$となる.これがRobertsonの不等式である.
◎Heisenbergの不確定性原理の導出Robertsonの不等式が導出できたので,あとは$A, B$をそれぞれ$\hat{x}, \hat{p}$に置き換えてみる.
すると,(5.14)は,
$$\langle (\delta \hat{x})^2 \rangle \langle (\delta \hat{p})^2 \rangle \geq \frac{1}{4} |\langle [\hat{x}, \hat{p} ] \rangle |^2 \tag{5.15}$$となる.(5.4)と(5.15)より,
$$\sqrt{\langle (\delta \hat{x})^2 \rangle \langle (\delta \hat{p})^2 \rangle} \geq \frac{\hbar}{2} \tag{5.16}$$となって,Heisenbergの不確定性原理の式が導出された.
◎参考文献 (敬称略)・量子力学(I)(裳華房) / 著・江沢洋
・量子物理(オーム社) / 著・望月和子
・量子力学A 資料第5回「演算子と固有値・固有関数(その2)」 / 草部浩一
・Wikipedia-不確定性原理 →
リンク・Wikipedia-交換関係 →
リンク・理工系数学のアラカルト-ロバートソンの不等式とその証明 →
リンク
スポンサーサイト
テーマ:物理学 - ジャンル:学問・文化・芸術
- 2015/11/07(土) 20:31:05|
- 理系教科メモ
-
| トラックバック:0
-
| コメント:0