久しぶりにメモを残す.
大学で量子力学の講義が始まって約1ヶ月になるが,少し理解が追いついていない可能性があるため,ここにメモがてらしたためることにした.
とりあえず,今回は量子力学や統計力学で扱う確率論を踏まえた,平均値のお話.
◎波動関数の規格化と確率解釈規格化された複素数波動関数$\psi (x,t)$を考える.(一般の位置$\mathbf{r}$に対する波動関数$\psi (\mathbf{r}, t)$でもよいが...)
つまり,このとき
\[ \int _{\Omega} \psi^* \psi dx=1 \tag{4.1} \]
が成り立っているものとする($\psi^* := \overline{\psi} $ である).
$\Omega$は$\psi$が定義されている全空間であるとするならば,(4.1)の左辺の値が1となるのは当然である.
また、Bornの確率解釈に従えば,「時刻tで一次元体積素$dx$の中に粒子を見出す確率が$\psi^* \psi dx$である」と言える.
(もちろん,一般に考えると体積素は$d \mathbf{r}$となる.)
◎期待値(≒平均値)の定義先の項で示したBornの確率解釈の話によれば,時刻tで位置$x$に粒子を見出す確率は$x \psi^* \psi$であると言えるだろう.
これを全空間$\Omega$にわたり積分すれば,粒子の位置の期待値が得られる.これを$\langle x \rangle$と書くならば,
\[ \begin{eqnarray} \langle x \rangle &:=& \int _{\Omega} x\psi^* \psi dx \\
&=& \int _{\Omega} \psi^* x\psi dx \tag{4.2}
\end{eqnarray} \]
ということである.
$\psi^*$と$\psi$で挟む形に敢えてしたのは,運動量$p$の対応を考えると都合がよくなるからである.
(このあたりは不勉強なため,もう少し整理できたら別の記事でまとめます)
以上をまとめて,期待値の演算子(のようなもの)を考えると,次の(4.3)式のようになるはずである.
\[ \langle \cdot \rangle := \int_{\Omega} \psi^* \cdot \psi dx \tag{4.3} \]
たとえば,次のようになる.各式の2式目と3式目は,対応を考えれば成り立っていることが分かる.
$$ \begin{eqnarray}
\langle \hat{x} \rangle &=& \int_{\Omega} \psi^* \hat{x} \psi dx = \int_{\Omega} \psi^* x \psi dx \tag{4.4} \\
\langle \hat{p} \rangle &=& \int_{\Omega}\psi^* \hat{p} \psi dx = \int_{\Omega} \psi^* \left( -i\hbar \frac{\partial}{\partial x} \right) \psi dx \tag{4.5}
\end{eqnarray} $$
※ブラ・ケット記法を借りると,(4.3)式は次のように書き改めることもできる.
$$ \langle \cdot \rangle := \langle \psi | \cdot |\psi \rangle \tag{4.6}$$
◎Ehrenfestの定理さて,(4.4)式と(4.5)式で位置と運動量の期待値$\langle \hat{x} \rangle$,$\langle \hat{p} \rangle$が与えられた.これらをそれぞれ時間微分してみる.
$$ \begin{eqnarray}
\frac{d}{dt}\langle \hat{x} \rangle &=& \frac{d}{dt}\int_{\Omega}\psi^* x\psi dx \\
&=& \int_{\Omega}\left( \frac{\partial\psi^*}{\partial t}x\psi +\psi^* x\frac{\partial\psi}{\partial t}\right)dx \\
&=& -\frac{1}{i\hbar}\int_{\Omega}\left[ \left(-i\hbar\frac{\partial\psi^*}{\partial t}\right) x\psi - \psi^*x \left( i\hbar \frac{\partial \psi}{\partial t} \right) \right] dx \\
&=& -\frac{1}{i\hbar}\int_{\Omega}({\cal H}\psi)^*x\psi dx +\frac{1}{i\hbar}\int_{\Omega}\psi^*x({\cal H}\psi)dx \\
&=& \frac{1}{i\hbar}\left[ \int_{\Omega}\psi^*x \left( -\frac{\hbar ^2}{2m}\Delta +V(x) \right) \psi dx \ - \ \int_{\Omega}\left( -\frac{\hbar ^2}{2m}\Delta +V(x) \right)\psi^* x\psi dx \right] \\
&=& \frac{i\hbar}{2m}\int_{\Omega}[\psi^* x\Delta\psi -(\Delta\psi^*)x\psi]dx \\
&=& \frac{1}{m}\int_{\Omega}\psi^*\left(-i\hbar \frac{\partial}{\partial x} \right)\psi dx \\
&=& \frac{1}{m} \langle \hat{p} \rangle \tag{4.7}
\end{eqnarray} $$
$$ \begin{eqnarray}
\frac{d}{dt}\langle \hat{p} \rangle &=& \frac{d}{dt}\int_{\Omega}\psi^* \left( -i\hbar \frac{\partial}{\partial x}\right)\psi dx \\
&=& -i\hbar \left[ \int_{\Omega}\frac{\partial \psi^*}{\partial t}\frac{\partial}{\partial x}\psi dx +\int_{\Omega}\psi^*\frac{\partial}{\partial x}\frac{\partial \psi}{\partial t}dx \right] \\
&=& \int_{\Omega}({\cal H}\psi)^* \frac{\partial}{\partial x}\psi dx -\int_{\Omega}\psi^* \frac{\partial}{\partial x}({\cal H}\psi)dx \\
&=& \int_{\Omega} \left( -\frac{\hbar ^2}{2m}\Delta +V(x) \right)\psi^* \frac{\partial\psi}{\partial x}dx - \int_{\Omega}\psi^* \frac{\partial}{\partial x}\left( -\frac{\hbar ^2}{2m}\Delta +V(x) \right) \psi dx \\
&=& \int_{\Omega} \left[ -\frac{\hbar ^2}{2m} \left( \psi^* \Delta \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} \Delta \psi \right) +\psi^* V(x) \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} (V(x)\psi ) \right] dx \\
&=& \int_{\Omega}\psi^* \left( -\frac{\partial}{\partial x} V(x) \right) \psi dx \\
&=& \langle -\frac{\partial}{\partial x} V(x) \rangle \\
&=& \langle F(x) \rangle \tag{4.8}
\end{eqnarray} $$
以上の(4.7)と(4.8)を一般的に書くと,次のようになる.
\[ \begin{eqnarray}
m\frac{d}{dt}\langle \hat{\mathbf{r}} \rangle = \langle \hat{\mathbf{p}} \rangle \tag{4.9} \\
\frac{d}{dt} \langle \hat{\mathbf{p}} \rangle = \langle \mathbf{F} \rangle \tag{4.10}
\end{eqnarray} \]
(4.10)の右辺は$\langle -\nabla V(\mathbf{r}) \rangle$と書くこともある.
これをEhrenfestの定理と言う.このEhrenfestの定理によって,以下のことが保障される.
『波束の位置,運動量をそれらの量子論的期待値と解釈すれば,古典論的運動と量子論的運動が一致する.』これにより,古典論と量子論の対応を議論する際にEhrenfestの定理が重要な役割を果たす.
◎参考文献 (敬称略)・量子物理(オーム社) / 著・望月和子
・量子力学A 資料第3回「波動関数」 / 草部浩一
・エーレンフェストの定理 (Wikipedia) →
リンク・量子力学・期待値 (EMANの物理学) →
リンク
スポンサーサイト
テーマ:物理学 - ジャンル:学問・文化・芸術
- 2015/11/01(日) 20:42:12|
- 理系教科メモ
-
| トラックバック:0
-
| コメント:0